
CSE 332: Data Structures and Parallelism

Section 4: Balanced Trees Solutions

0. The ABC’s of AVL Trees
What are the constraints on the data types you can store in an AVL tree? When is an
AVL tree preferred over another dictionary implementation, such as a HashMap?

AVL trees are similar to TreeMaps. The constraint is that they require that keys be
comparable. The value type can be anything, just like any other dictionary.

A perk over HashMaps is that keys can be iterated over in sorted order. AVL trees are
also preferred over BSTs when there’s a possibility of sorted input because the
balancing prevents the worst case of a degenerate tree.

1. Let’s Plant an AVL Tree
Insert 10, 4, 5, 8, 9, 6, 11, 3, 2, 1, 14 into an initially empty AVL Tree.



2. MinVL Trees
Draw an AVL tree of height 4 that contains the minimum possible number of nodes.

3. AVL Trees
Insert 6, 5, 4, 3, 2, 1, 10, 9, 8, 7 into an initially empty AVL Tree.



4. The ABC’s of B-Trees
a) What properties must a B-tree of n values have with given values for and ?𝑀 𝐿

- B-Tree order property:

- Every subtree between keys and contains all data where𝑎 𝑏 𝑥 𝑎 ≤ 𝑥 < 𝑏

- The values in the leaves are in key sorted order

- The keys in the internal nodes are stored in sorted order

- B-Tree structure property:

- If , the root is a leaf with values, otherwise the root is an internal𝑛 ≤ 𝐿 𝑛

node that must have between 2 and children𝑀

- All internal nodes must have between and M children (i.e.,𝑐𝑒𝑖𝑙 𝑀
2( )

half-full)

- All leaf nodes must have between and L key-value pairs (i.e.,𝑐𝑒𝑖𝑙 𝐿
2( )

half-full)

- All leaf nodes must be at the same depth

b) Give an example of a situation that would be a good job for a B-tree.
Furthermore, are there any constraints on the data that B-trees can store?

B-trees are most appropriate for very, very large data stores, like databases,
where the majority of the data lives on disk and cannot possibly fit into RAM all
at once.

B-trees require orderable keys. B-trees are typically not implemented in Java
because what makes them worthwhile is their precise management of memory.



5. Implement a B-Tree? Nah, Let’s Analyze!
Given the following parameters for a B-Tree with a page size of 256 bytes:

- Key Size = 8 bytes
- Pointer Size = 2 bytes
- Data Size = 14 bytes per record (includes the key)

Assuming that and were chosen appropriately, what are and ? Recall that is𝑀 𝐿 𝑀 𝐿 𝑀
defined as the maximum number of pointers in an internal node, and is defined as the𝐿
maximum number of values in a leaf node. Give a numeric answer and a short
justification based on two equations using the parameter values above.

We start by defining the following variables:
- 1 page on disk is bytes𝑏
- Keys are bytes𝑘
- Pointers are bytes𝑡
- Key/Value pairs are bytes𝑣

We know that the amount of memory used by one leaf node is and the amount of𝑣𝐿
memory used by one internal node is . We want select values for𝑡𝑀 + 𝑘(𝑀 − 1) 𝑀
and such that both equations are .𝐿 ≤ 𝑏

If we solve both equations for and , we obtain𝑀 𝐿

and𝑀 = 𝑓𝑙𝑜𝑜𝑟 𝑏+𝑘
𝑡+𝑘( ) 𝐿 = 𝑓𝑙𝑜𝑜𝑟 𝑏

𝑣( )
Plugging in the given values, we get

and𝑀 = 𝑓𝑙𝑜𝑜𝑟 256+8
2+8( ) = 26 𝐿 = 𝑓𝑙𝑜𝑜𝑟 256

14( ) = 18



6. Oh, B-Trees
Find a tight upper bound on the worst case runtime of these operations on a B-tree.
Your answers should be in terms of , , and .𝑀 𝐿 𝑛

a) Looking up the value of a key

a) We must do a binary search on a node containing pointers, which𝑀
takes time, once at each level of the tree.𝒪 lg 𝑀( )( )

b) There are levels.𝒪 log
𝑀
𝑛( )( )

c) We must do a binary search on a leaf of elements, which takes𝐿
𝒪 lg 𝐿( )( )

d) Putting it all together, a tight bound on the runtime is
.𝒪 lg 𝑀( )log

𝑀
𝑛( ) + lg 𝐿( )( )

b) Inserting and deleting a key-value pair

The steps for insert and delete are similar and have the same worst case
runtime.

a) Find the leaf: . Same runtime as looking up the value of𝒪 lg 𝑀( )log
𝑀
𝑛( )( )

a key.
b) Insert/remove in the leaf – there are elements, essentially stored in an𝐿

array: 𝒪 𝐿( )
c) Split a leaf/merge neighbors: 𝒪 𝐿( )
d) Split/merge parents, in the worst case going up to the root: 𝒪 𝑀log

𝑀
𝑛( )( )

The total cost is then lg 𝑀( )log
𝑀
𝑛( ) + 2𝐿 + 𝑀log

𝑀
𝑛( )

We can simplify this to a worst-case runtime by combining𝒪 𝐿 + 𝑀log
𝑀
𝑛( )( )

constants and observing that dominates . Note that in𝑀log
𝑀
𝑛( ) lg 𝑀( )log

𝑀
𝑛( )

the average case, splits for any reasonably-sized B-tree are rare, so we can
amortize the work of splitting over many operations.

However, if we’re using a B-tree, it’s because what concerns us the most is the
penalty of disk accesses. In that case, we might find it more useful to look at
the worst-case number of disk lookup operations in the B-tree, which is

.𝒪 log
𝑀
𝑛( )( )



7. B-Trees
a) Insert the following into an empty B-Tree with and :𝑀 = 3 𝐿 = 3

12, 24, 36, 17, 18, 5, 22, 20

b) Delete 17, 12, 22, 5, 36



c) Given the following parameters for a B-Tree with and𝑀 = 11 𝐿 = 8
- Key Size = 10 bytes
- Pointer Size = 2 bytes
- Data Size = 16 bytes per record (includes the key)

Assuming that and were chosen appropriately, what is the likely page size on𝑀 𝐿
the machine where this implementation will be deployed? Give a numeric answer
and a short justification based on two equations using the parameter values
above.

We start by defining the following variables:
- 1 page on disk is bytes𝑏
- Keys are bytes𝑘
- Pointers are bytes𝑡
- Key/Value pairs are bytes𝑣

We know that the amount of memory used by one leaf node is
and the amount of memory used by one internal node is .𝑣𝐿 𝑡𝑀 + 𝑘(𝑀 − 1)

We want select values for and such that both equations are .𝑀 𝐿 ≤ 𝑏

If we solve both equations for and , we obtain𝑀 𝐿

and𝑀 = 𝑓𝑙𝑜𝑜𝑟 𝑏+𝑘
𝑡+𝑘( ) 𝐿 = 𝑓𝑙𝑜𝑜𝑟 𝑏

𝑣( )
Plugging in the given values, we get

and𝑀 = 𝑓𝑙𝑜𝑜𝑟 𝑏+10
2+10( ) 𝐿 = 𝑓𝑙𝑜𝑜𝑟 𝑏

16( )
And solving for gives us:𝑏

bytes𝑏 = 128



8. It’s Fun to B-Trees!
a) Insert the following into an empty B-Tree with and :𝑀 = 3 𝐿 = 3

3, 32, 9, 26, 6, 21, 8, 4, 5, 30, 31

b) Delete 4, 5, 21, 9, 31, 3, 26, 8


